

Cetakan Pertama 2022

©Politeknik Kuala Terengganu

Tidak dibenarkan diterbitkan semula atau ditukar dalam apa jua

bentuk dengan cara apa jua sama ada elektronik, mekanikal,

fotokopi, rakaman dan sebagainya sebelum mendapat

kebenaran bertulis daripada Pengarah Politeknik Kuala

Terengganu.

Diterbitkan oleh:

Politeknik Kuala Terengganu

20200 Jalan Sultan Ismail

Kuala Terengganu, Terengganu.

Politeknik Kuala Terengganu

All right reserved. No part of this book may be reproduced or transmitted in any form or by

any means, electronic or mechanical, including photocopying, recording or by any

information storage or retrieval system, without prior written permission from the publisher,

Politeknik Kuala Terengganu

Author:

Mohd Sabri Bin Ahmad

Siti Sarah Malini Bt Mohd Hanifa

Rasmaliza Bt Rashid

Published by:

Politeknik Kuala Terengganu

20200 Jalan Sultan Ismail

Kuala Terengganu, Terengganu

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Mohd. Sabri Ahmad, 1982-

DATA STRUCTURES / AUTHOR Mohd Sabri Bin Ahmad, Siti Sarah Malini Bt Mohd Hanifa,

Rasmaliza Bt Rashid.

Mode of access: Internet

eISBN 978-967-2240-39-6

1. Data structures (Computer science).

2. Electronic data processing.

3. Government publications--Malaysia.

4. Electronic books

I. Siti Sarah Malini Mohd. Hanifa, 1982-. II. Rasmaliza Rashid, 1979-. III. Title. 005.73

AUTHOR

MOHD SABRI BIN

AHMAD

SITI SARAH MALINI BT

MOHD HANIFA

RASMALIZA BT

RASHID

CHAPTER PAGE

INTRODUCTION TO
DATA STRUCTURE

1 - 30 1

2

3

4

5

6

LIST AND LINKED LIST 31 - 54

55 - 92

93 - 131

132 - 149

150 - 165

STACKS

QUEUES

TREES

SORTING & SEARCHING

OVERVIEW

e-Book Data Structures is written to

focus on the basic concept of data

structures. This e-book cover the specific

topic of data structures such as linked

list, stacks, queues, trees, sorting and

searching. The emphasis is on choosing

appropriate data structures and

designing correct and efficient

algorithms to operate on these data

structures.

CHAPTER 1

INTRODUCTION
TO

DATA STRUCTURE

DEFINITION OF

DATA STRUCTURE

Data structure is a
specialized format for
organizing and storing
data.

Any data structure is
designed to organize
data to suit a specific
purpose so that it can
be accessed and
worked with in
appropriate ways.

1

TYPES OF DATA IN

DATA STRUCTURE

Primitive and
non-primitive
(data type)

Linear and
non-linear
(structure)

Static and
dynamic

(structure)

2

DIFFERENCE BETWEEN
PRIMITIVE &

NON PRIMITIVE

DATA TYPES

3

Primitive

Data Types

Non-primitive

Data Types

• Available in most of the

programming languages

• Used to represent single

values

• Integer

• Example:

✓ Float and Double

✓ Character

✓ String

✓ Boolean

• Not defined by the

programming language

but created by the

programmer

• Used to store a group

of values

• Example:

✓ Arrays

✓ Structure

✓ Union

✓ Linked list

✓ Stacks

✓ Queue

4

DIFFERENCE
BETWEEN LINEAR &

NON LINEAR

DATA TYPES

5

Linear

Data Types

Non-linear

Data Types

• Data elements ARE

arranged sequentially or

linearly

• Single level is involved

• Are easy to implement

because computer

memory is arranged in a

linear way

• Data elements can be

traversed in a single run

• Data elements ARE

arranged in

hierarchically manner

• Multiple levels are

involved.

• Not easy to implement

because it utilizes

computer memory

efficiently

• Data elements can’t be

traversed in a single run

only.

6

Linear

Data Types

Non-linear

Data Types

• Memory is NOT utilized

in an efficient way

• Application:

✓ Software

development

• Example:

✓ Array

✓ Stacks

✓ Queue

✓ Linked List

• Memory is utilized in an

efficient way

• Applications :

✓ Artificial

intelligence and

image processing

• Example:

✓ Graph

✓ Tree

7

Array

Multidimensional Array

List

Linear

8

Linear

Stack

Linear

9

Queue

Linear

10

Graph

Non - Linear

11

Graph

Non - Linear

12

DIFFERENCE BETWEEN
STATIC &

DYNAMIC BEHAVIOUR

(STRUCTURE)

13

Static Behaviour

(Structure)

Dynamic Behaviour

(Structure)

• The size of the structure

is fixed – once created

the size cannot be

change

• Very good for storing a

well-defined number of

data items

• Example: Array

• The data structure is

allowed to grow and

shrink as the demand for

storage arises – size

can be change while

running

• The number of items to

be stored is not known

before hand,

• Need to set a

maximum size to help

avoid memory collisions

• Example: Tree

14

Advantages

Static Behaviour

Compiler allocates spaces

Easy to program

Easy to check overflow

Allow arrays random access

Disadvantages

Static Behaviour

Have to estimate the size needed

Memory waste

Static Behaviour

(Structure)

15

Advantages

Dynamic Behaviour

Disadvantages

Dynamic Behaviour

Dynamic Behaviour

(Structure)

Only use what memory is needed

Efficient use of memory

Hard to program

Searching is slow

16

Selection of

Data Structure

There are many considerations to be taken into

account when choosing the best data structure

for a specific program:

Size of data

Speed and manner data use

Data dynamics, as change and edit.

Size of required storage

Fetch time of any information from data
structure

17

Structure

Structure members are
accessed by its variable as '.'

operator.

Structure is a collection of
heterogeneous data.

It’s create user-defined

type.

Structure members are
referred by its unique
name.

18

General Syntax to

Define structure and

declare structure

struct struct_name {

member_type1 member_name1;

member_type2 member_name2;

member_type3 member_name3;

} ;

define

“Define and declare a structure type called Book with three

members bookName (25 character), bookID and bookPrice

in a different data type. “

Example:

struct Book{

char bookName[25];

int bookID;

float bookPrice;

} ;

19

However, memory has not
been allocated after structure
declaration.

To allocate memory

of a given structure type

To allocate memory of a given
structure type and work with it,
we need to create variables of
a given structure type.

Book1 Variable name as Book1

struct Book{
char bookName[25];
int bookID;
float bookPrice;

} ;
OR

struct Book{
char bookName[25];
int bookID;
float bookPrice;

};
Book Book1; Variable name as Book1

20

Memory is allocated after the
declaration of a variable of
a structure type.

Memory allocated when

variables of a given

structure type created

bookName

bookID

bookPrice

Book 1

Memory
Allocated

21

Memory is allocated after the
declaration of a variable of
a structure type.

Variable
name as Book1

Assigning values into

variables member in

structure

Book1 bookID = 123;

.Book1 bookPrice = 55.00;

.

Assigning value into each variable

member in a structure by accessing

each member using variables created

from the type of structure declared.

22

To allocate memory of a given structure
type and work with it, we need to create
variables.

Book1

bookName
JSP

bookPrice

55.00

bookID
123

Assign value into variable
members in structure:

.Book1 bookName= “JSP”;

Book1 bookID = 123;.
Book1 bookIPrice= 55.00;.

Structure

23

struct Book{
char bookName[25];
int bookID;
float bookPrice;

} ; Book1, Book2, Book3

Create variables with
the same Structure

24

Book1

bookName

bookID

bookPrice

Book2

bookName

bookID

bookPrice

Book3

bookName

bookID

bookPrice

struct Book{
char bookName[25];
int bookID;
float bookPrice;

} MyBook[3] ;

Array As Structure

25

bookName

bookID

bookPrice

bookName

bookID

bookPrice

bookName

bookID

bookPrice

MyBook

[0] [1] [2]

struct Student{
int id;
float test[3];
float finaltest;

} Stu[3];

Array As Structure
Member

26

id

test

[0] [1] [2]

finaltest

id

test

[0] [1] [2]

finaltest

id

test

[0] [1] [2]

finaltest

[0] [1] [2]

Stu

1. We must know in advance that how many
elements are to be stored in array.

2. Array is static structure. It means that array is of
fixed size. The memory which is allocated to array
can not be increased or reduced.

3. Since array is of fixed size, if we allocate more
memory than requirement then the memory space
will be wasted. And if we allocate less memory
than requirement, then it will create problem.

4. The elements of array are stored in consecutive
memory locations. So insertions and deletions are
very difficult and time consuming.

Disadvantages Of
An Array

27

Activity

a. A tree is a dynamic data structure.

i) State the meaning of the term dynamic
when applied to data structure.
…………………………………………………
…………………………………………………

ii) State one disadvantage to programmer
of using dynamic data structures
compared with static data structures.

…………………………………………
…………………………………………

iii) State one type of data structure which must
be static.
…………………………………………………
…………………………………………………

28

Activity

b. Define a data structure named “Pelajar”.

.……………………………………………….

c. Based on answer in previous question (a),
declare the following data members in a
structure Pelajar
i) “nopend” with a character type
ii) “nama” with a character type
iii) “umur” with an integer type
iv) “gpa” with a floating point type
…………………………………………………
…………………………………………………
.………………………………………………...
…………………………………………………

d. Based on answer in previous question (b),
declare a variable named “objek” using
structure type of Pelajar.
..………………………………………………...

……..……………………………………………..

29

Activity

e. Based on answer in previous question (c),
access data members in struct Pelajar using
variable “objek” by assigning following
values to each data members.
i) “nopend” with a value of your own

registration number
ii) “nama” with your own name
iii) “umur” with your own age
iv) “gpa” with your current gpa

…………………………………………………
…………………………………………………
…………………………………………………
…………………………………………………
…………………………………………………
………………………………………………….

30

CHAPTER 2

LIST
&

LINKED LIST

LIST

The list is a collection of data,

elements, components or objects of
the same data type.

List a group of student which
will have same data such as
name, matric number

List a group of staff which
will have same data such as
name, staff number, identity
card number.

What is List ?

31

LIST
A list is a sequential data structure

❑ lists are stored sequentially in
memory

❑ the elements are stored one
after the other

❑ element data are faster to
access

❑ addition or deletion of
elements data is slow

It differs from the stack and
queue data structures in that
additions and removals can
be made at any position in

the list

32

ILLUSTRATION OF LIST

01 Create a new empty List named
L with size 5

Initialize

[0] [1] [2] [3] [4]

L

02 adds the value A to list L at
position 0

Add(0,A,L)

[0] [1] [2] [3] [4]

L

A

03
adds the value B to list L at
position 1

Add(1,B,L)

[0] [1] [2] [3] [4]

L

A B

04
adds the value C to list L at
position 2

Add(2,C,L)

[0] [1] [2] [3] [4]

L

A B C

adds the value X to list L at
position 1 (shifting subsequent
elements up)

Add(1,X,L)
05

[0] [1] [2] [3] [4]

L

A X CB

33

ILLUSTRATION OF LIST

returns the value of the third
element which is C

Get(2,L)
08

returns the index of the element
with value X, which is 1

IndexOf(X,L)
09

07 Remove value Z
(shifting subsequent elements
down)

Remove(Z,L)

[0] [1] [2] [3] [4]

L

A X C

06 Set(2,Z,L)updates the values at
position 2 to be Z

Set(2,Z,L)

[0] [1] [2] [3] [4]

L

A X CZ

34

C

1

SHIFTED IN LIST

The time taken to add
element near the start
of the list take longer
than additions near
the middle or end list.

Shifted up

[0] [1] [2] [3] [4]

L

A B C

[0] [1] [2] [3] [4]

L

A X CB

To add X at index 1, B
and C have to shifted
up one step forward

The time taken to add
in the list does
depend on the size of
the list except to add
an element at the end
of the list.

Shifted up

Shifted down

[0] [1] [2] [3] [4]

L

A X C

The time taken to
remove element near
the start of the list
take longer than
removing near the
middle or end list.

[0] [1] [2] [3] [4]

L

A X CZ

After remove Z at index
2, C have to shifted
down one step
backward

The time taken to
remove in the list does
depend on the size of
the list except to
remove an element at
the end of the list.

Shifted down

35

LINKED LIST
A linked list is a series of connected
nodes where each node consists of
an element of data and one or more
pointers to other nodes.

10 24 40 50 NULL

Node Node Node Node

▪ Head node acts as a pointer to the
first node in linked list and contains
the address of the first node.

▪ The most important concept in linked
list is the node that point/link to other
node.

▪ Linked list consist of at least one
head node.

36

LINKED LIST

Linked list is said to be empty when
it does not contain any node or
head node contains the value
NULL.

NULL

Head Node

37

Linked list must consist of at least
one head node

AYU

Data Field

NULL

Link Field

Node

0002

ABU

Data Field

Node

0002

Link Field

0001

Head Node
0001

Each Node contains:

Node containing data
AYU is known as Last

Node in a Linked List

Linked List

38

Each Node can contains more than
one data:

Fasehah 20 3.25

Head node

Name Age cgpa link

Syukri 2.25 NULL

Name Age cgpa link

2.25

Link fieldData field Link fieldData field

Node In A Linked

List

39

DIFFERENCE LIST &

LINKED LIST

40

List Linked List

• Elements are stored in

linear order, accessible

with an index.

• Have a fixed size, it is

static data structure.

• Can access the

previous element easily

• Insertions and Deletions

are not efficient

because of shifting

element.

• Waste of memory if the

size of list is bigger than

the size of data.

• Elements are stored in

linear order, accessible

with links.

• Do not have a fixed

size, it is dynamic data

structure.

• Cannot access the

previous element

• Insertions and Deletions

are efficient because of

no shifting element.

• There is no waste of

memory.

41

List Linked List

• Sequential access is

faster because elements

in contiguous memory

locations allocation.

• Requires less memory

because List only holds

actual data and its

index

• Sequential access slow

because elements not in

contiguous memory

locations allocation

• Requires more memory

because each node

holds data and

reference to next and

previous elements.

42

Name. Age cgp

a

link

Naemah 25 3.25 0003

Fasehah 20 3.25 0004

Nabila 28 2.25 Null

Syukri 25 2.25 Null

0001

Head node
0001

0002

0003

0004

0002

Head node

Memory Management Linked list not in
contiguous memory locations allocation

Naemah 25 3.25

Head
node

Name Age cgpa link

Nabila 2.25 NULL

Name Age cgpa link

28

Link fieldData field Link fieldData field

Fasehah 20 3.25

Head
node

Name Age cgpa link
Syukri 2.25 NULL

Name Age cgpa link

25

Link fieldData field Link fieldData field

Memory Management

In A Linked List

43

Address Data

Field

Link

Field

1 A 4

2

3

4 B 6

5

6 C 8

7

8 D 1

1

Head
node

1

Head
node

A 4

B 6

C 8

D 1

Memory Management Linked
list not in contiguous

memory locations

allocation

Memory Management

In A Linked List

44

Dynamic Data Structure

It can grow and shrink at
runtime by allocating and

deallocating memory. There is
no need to give initial size of

linked list

Insertion and Deletion

don’t have to shift elements
after insertion or deletion of an

element

No Memory Wastage

memory is allocated only when
required Implementation

Data structures such as stack
and queues can be easily

implemented using linked list.

Advantages Of

Linked List

45

Memory Usage

More memory is required to
store elements in linked list as

compared to array. Because in
linked list each node

contains a pointer and it
requires extra memory for itself.

Traversal

Elements or nodes traversal is
difficult in linked list. We can not
randomly access any element

as we do in array by index. For
example if we want to access
a node at position n then we
have to traverse all the nodes
before it. So, time required to

access a node is large

Reverse Traversing

In linked list reverse traversing is
really difficult. In case of doubly

linked list its easier but extra
memory is required for back
pointer hence wastage of

memory.

Disvantages Of

Linked List

46

TYPE OF
LINKED LIST

47

Types of Linked List

▪ can be traversed in only one

direction from head to the last node.

Single Linked List

01

▪ each node contains only one link

field pointing the next node in the
list.

▪ last node contain value NULL.

Head

Next

Null

Next

48

Types of Linked List

▪ can be traversed in either forward

and backward easily as compared

to Single Linked List.

Double Linked List

02

▪ each node contains two link field to
point to next node and previous
node in the linked list.

▪ First node contains value of null

in previous link field

▪ First node contains value of null

in next link field

▪ Playlist MP3

Next NullNext

Head

Null Prev Prev

Double Linked List

49

Types of Linked List

▪ all nodes are connected to form a
circle

Circular Linked List

03

▪ last node contains the address of
the first node in link field.

▪ how do we know when we have
finished traversing the list?

▪ the real life application where the
circular linked list is used is our
Personal Computers, where multiple
applications are running.

Head

Next

Next

Next

50

Types of Linked List

▪ the last node of the list contains the
address of the first node in next link
field

Circular Doubly Linked List

04

▪ the first node of the list contains the
address of the last node in previous
link field

▪ doesn't contain NULL in any of
the node

▪ convenient to traverse lists
backwards and forwards

Next NextNext

Head

Prev Prev Prev

51

Activity

52

1. Draw a new list based on Figure A, after adding
value M to list myList at position 1.

[0] [1] [2] [3] [4]

myList

A B C

Figure A

2. From the answer in Question (1), explain the
movement that occurs to the value of B and C.

3. Draw a new list based on Figure B, after
removing value A from a list myList.

[0] [1] [2] [3] [4]

myList

A X CB

Figure B

4. From the answer in Question (3), explain the
movement that occurs to the value of X, B and
C.

Activity

53

6. State THREE (3) types of linked list

7. State THREE (3) differences between list and linked
list

8. Draw a circular linked list based on memory
representation of circular linked list in Figure A.

Figure A

5. Illustrate Circular linked list with 5 nodes

Activity

54

9. Draw a circular double linked list based on
memory representation of circular double linked
list in Figure B.

Figure B

CHAPTER 3

STACK

INTRODUCTION

TO STACK

Stack is a collection of items which
is organized in a sequential

manner

Example: stack of books or stack of
plates

All additions and deletions are

restricted at one end, called top

LAST IN FIRST OUT (LIFO) data
structure

55

a person wear bangles

the last bangle worn is the first one
to be removed

and the first bangle would be the
last to be removed

This follows last in first out (LIFO)
principle of stack

Batteries in the flashlight :

You can’t remove the second
battery unless you remove the
last in. So the battery that was
put in first would be the last one
to take out.

This follows the LIFO principle of
stack

Implementation Of

Stack In Real Life

56

Cars in a garage :

In order to take out the car that was
parked first you need to take out the
car that was parked last. So the car
that was parked first would be the
last to take out.

This follows the LIFO principle of stack

Layer of Pancake :

When you’re placing pancakes on your plate you are
going to put them one after another on top of each
other. If you want to eat one of the pancakes in the
middle of your stack you will first have to eat all the
pancakes on top of the one you are trying to get to.
This is like a stack data structure where if you want to
get to an element in the middle of the stack you first
have to remove all of the elements that are on top of it.

This follows the LIFO principle of stack

Implementation Of

Stack In Real Life

57

What is Stack

Stack is an abstract data type

Adding an entry on the top (push)

Deleting an entry from the top (pop)

A stack is open at one end (the
top) only. You can push entry onto
the top, or pop the top entry out of
the stack

58

Last-in First-out

(LIFO)

59

Stack

Implementation

Stack is an abstract data
structure

Item can be Integer, Double, String,
and also can be any data type,

such as Employee, Student…

How to implement a general
stack for all those types?

We can implement stack
using array or linked list.

60

Stack Implementation

Using Array

Size of stack is fixed during
declaration

Item can be pushed if there is some
space available, need to check if
stack is full

Need a variable called, top to
keep track the top of a stack

Stack is empty when the value
of Top is –1

1

2

3

4

61

Stack Implementation

Using Linked List

Size of stack is flexible. Item can be
pushed and popped dynamically

1

Need a pointer, called top to point
to top of stack

2

62

Stack Operations:

• createStack()

• push(item)

• pop()

• stackTop()

“Stack can be visualized as
array, BUT the operations can
be done on top stack only. “

Stack Implementation

Using Array

63

0

1

2

3

A

B

C

push() pop()

❑ createStack() will allocate
fix size of an array and
initialize value of variable top is -1

❑ stackTop() refer to
last data inserted to stack

Push() and pop()

operations

64

Stack Implementation

Using Array

3 things to be considered for stack with array

1

Stack Empty : when top is -1

2
Push operations : To insert data into

stack, 2 statements must be used
top = top + 1;
stack[top] = data;

3

Push operations : To delete data from

stack, 2 statements must be used
stack[top] = null;
top = top – 1;

Stack Implementation

Using Array

65

Stack implemented using linked list –
number of elements in stack or size of
stack is not restricted to certain size

Dynamic memory creation, memory will
be assigned to stack when a new
node is pushed into stack, and
memory will be released when an
element being popped from the stack

Stack using linked list implementation
can be empty or contains a series of
nodes

Stack Implementation

Using Linked List

66

Each node in a stack must contain at least
2 attributes:
i. data – to store information in the stack.
ii. pointer next (store address of the next

node in the stack)

Basic operations for a stack implemented
using linked list:
i. createStack() – initialize top
ii. push() – insert data onto stack
iii. pop() – delete data from stack
iv. stackTop() – get data at top.

Push and pop operations can only
be done at the top ~ similar to add
and delete in front of the linked list.

Stack Implementation

Using Linked List

67

Stack Implementation

Using Linked List

Stack Operations:

• createStack()

• push(item)

• pop()

• stackTop()

NULL

head

❑ createStack() will create
a pointer as a head node
with initialization value of null

68

2 conditions for inserting element in stack

Insert to
empty
stack

Insert item to non
empty stack : stack

with value

push() to empty stack

NULL

head

0123 Ana 25 next

temp

nextagename

0123

In this situation the new node being inserted, will
become the first item in stack.

Step 1 : temp->next = head;

Step 2 : head = temp;

0123

head

Ana 25 NULL
nextagename

0123

Push() to empty stack

69

Stack Implementation

Using Linked List

▪ This operation is similar to inserting element in front
of a linked list. The next value for the new element
will point to the top of stack and head will point to
the new element

Ali 0111 Abu NULL

Ahmad next

0110

0110 0111

0112

20 30

35

name age next name age next

name age next

temp STEP 1 : temp->next = head

01110110

head

name age next

Step 1 : temp->next = head;

Step 2 : head = temp;

Ali 0111

Abu NULL

Ahmad 01100112

0110

0111

0112

20

30

35
name age next

name age next

name age next

head

name age next

Push() to non-empty stack

70

Stack Implementation

Using Linked List

▪ Pop operation can only be done to non-empty stack.
Before pop() operation can be done, operation must
be called in order to check whether the stack is
empty or there is item in the stack. If isEmpty()
function return true, pop() operation cannot be done.

▪ During pop() operation, an external pointer is
needed to point to the delete node. In the figure
below, delnode is the pointer variable to point to the
node that is going to be deleted.

Ali 0111

Abu NULL

Ahmad 01100112

0110

0111

0112

20

30

35

name age next

name age next

name age next

head

name age next

Step 1 : delnode = head;

0112

delnode

Pop() to non-empty stack

71

Stack Implementation

Using Linked List

Ali 0111

Abu NULL

Ahmad 01100110

head
0110

0111

0112

20

30

35

name age next

name age next

name age
delnode-

>next

head

name age next

Step 2 : head = delnode -> next;

0112

delnode

Ali 0111

Abu NULL

Ahmad 01100110

head 0110

0111

0112

20

30

35

name age next

name age next

name age
delnode-

>next
name age next

0112

delnode

Step 3 : delete delnode;

Pop() to non-empty stack

72

Stack Implementation

Using Linked List

0110

NULL

head

temp1

Siti 25 next

0110

name age next

temp1->next = head;
head = temp1;

Siti 25 NULL

name age next

0110

head

Push

0110

push() operations example:

73

Stack Implementation

Using Linked List

Amy 35 next

name age next

0111

temp2

temp2->next = head;
head = temp2;

0111

Amy 35 0110

name age next

0111

head

Push

Siti 25 NULL

name age next

0110

0111

Ayu 23 next

name age next

0112

temp3 0112

temp3->next = head;
head = temp3;

Amy 35 0110

name age next

0112

head

Push

Siti 25 NULL

name age next

0111

0110

Ayu 23 0111

0112

name age next

74

Stack Implementation

Using Linked List

push() operations example:

Nadia 25 next

name age next

0113

temp4 0113

temp4->next = head;
head = temp4;

75

Stack Implementation

Using Linked List

push() operations example:

0113

Amy 35 0110

name age next

Push

Siti 25 NULL

name age next

0111

0110

Ayu 23 0111

0112

name age next

Nadia 25 next0113

head

name age next

76

push() operations example:

Aminah 24 next

name age next

0114

temp5 0114

temp5->next = head;
head = temp5;

Amy 35 0110

name age next

0114

head

Siti 25 NULL

name age next

0111

0110

Ayu 23 0111

0112

name age next

Nadia 25 0112

0113

name age next

Aminah 24 0113

0114

name age next

Push

Stack Implementation

Using Linked List

77

Stack Implementation

Using Linked List

Step for pop() operations

STEP 1 : create a temporary pointer node
named as delnode

STEP 3 : assign the address of second node into
pointer head node.

head = delnode -> next;

or head = head->next;

STEP 2 : assign the address in pointer head
node into a temporary pointer node named
as delnode.

delnode = head;

delnode will point to first node in a linked list

STEP 4 : delete(delnode);

Amy 35 0110

name age next

0114

head

Siti 25 NULL

name age next

0111

0110

Ayu 23 0111

0112

name age next

Nadia 25 0112

0113

name age next

Aminah 24 0113

0114

name age next

78

0114

delnode

Step 2: delnode = head

null

delnode

Step 1

Step 3: head = delnode->next

Step 4: delete(delnode)

Stack Implementation

Using Linked List

79

Stack Implementation

Using Linked List

pop() operations

Amy 35 0110

name age next

0114

head

Siti 25 NULL

name age next

0111

0110

Ayu 23 0111

0112

name age next

Nadia 25 0112

0113

name age next

After Pop

Stack Application

Examples

▪ Check whether parentheses are balanced (open

and closed parentheses are properly paired)

▪ Evaluate Algebraic expressions.

▪ Creating simple Calculator

▪ Backtracking (example. Find the way out when lost in

a place)

Example 1 Parentheses Balance

• Stack can be used to recognize a balanced
parentheses.

• Examples of balanced parentheses.

(a+b), (a/b+c), a/((b-c)*d)

Open and closed parentheses are properly paired.

• Examples of not balance parentheses.

((a+b)*2 and m*(n+(k/2)))

Open and closed parentheses are not properly
paired.

80

Stack Application

Examples

Check for Balanced Parentheses Algorithm

• Every ‘(’ read from a string will be pushed into stack.

• The open parentheses ‘(’ will be popped from a stack

whenever the closed parentheses ‘)’ is read from string.

• An expression have balanced parentheses if :

✓ Each time a “)” is encountered it matches a previously

encountered “(“.

✓When reaching the end of the string, every “(“ is matched

and stack is finally empty.

• An expression does NOT have balanced parentheses if :

✓When there is still ‘)’ in input string, the stack is already

empty.

✓When end of string is reached, there is still ‘(‘ in stack.

81

Stack Application

Examples

Example for Balance Parentheses

3

2

1

0 (

3

2

1 (

0 (

3

2

1

0 (

3

2

1

0

Push(() Push(() Pop() Pop()

a (b (c))

Expression a(b(c)) have balance parentheses since when

end of string is found the stack is empty.

82

Stack Application

Examples

Example for Balance Parentheses

Expression a(b(c))) f does not have balance parentheses =>
the third) encountered does not has its match, the stack is
empty.

Push(()

3

2

1 (

0 (

Push(()

3

2

1

0 (

Pop()

3

2

1

0

Pop()

3

2

1

0

Pop()->fail

3

2

1 (

0 (

a (b (c))) f

83

Stack Application

Examples

Conversion of Infix expression to Postfix

expression using Stack data structure

▪ Infix expressions are hard to parse in a computer
program hence it will be difficult to evaluate expressions
using infix notation.

▪ Postfix expressions are used in the computer programs.

Symbol Stack Postfix

A A

* * A

(* (A

B * (A B

+ * (+ A B

C * (+ A B C

) * A B C +

* A B C + *

A * (B + C)

84

Stack Application

Examples

Symbol Stack Postfix

A A

* * A

B * A B

^ * ^ A B

C * ^ A B C

+ + A B C ^ *

D + A B C ^ * D

A B C ^ * D +

A * B ^ C + D

3 * 4 + 5
Symbol Stack Postfix Expression Description

3 3

* 3

4 3 4

+ 3 4 * ‘*’ is higher
precedence than
‘+’

5 3 4 * 5

3 4 * 5 +

*

*

+

+

85

Stack Application

Examples

Symbol Stack Postfix

3 3

* * 3

4 * 3 4

+ + 3 4 *

5 + 3 4 * 5

3 4 * 5 +

3 * 4 + 5

Conversion of Infix expression to Postfix

expression using Stack data structure

86

Stack Application

Examples

Symbol Stack Postfix

((

A (A

+ (+ A

((+ (A

B (+ (A B

* (+ (* A B

C (+ (* A B C

- (+ (- A B C *

((+ (- (A B C *

D (+ (- (A B C * D

/ (+ (- (/ A B C * D

E (+ (- (/ A B C * D E

(+ (- (/ A B C * D E

F (+ (- (/ A B C * D E F

) (+ (- A B C * D E F /

* (+ (- * A B C * D E F /

G (+ (- * A B C * D E F / G

) (+ A B C * D E F / G * -

* (+ * A B C * D E F / G * - H

H (+ * A B C * D E F / G * - H

) A B C * D E F / G * - H * +

(A + (B * C – (D / E ^ F) * G) * H)

87

^
^

^
^
^

^
^

^

^ ^

Stack Application

Examples

Symbol Stack Postfix Description

2 Push 2

3 Push 2 3

1 Push 2 3 1

* Pop Two Elements &
Evaluate

2 3 * 1 = 3

Push Result (3) 2 3

+ Pop Two Elements &
Evaluate

2 + 3 = 5

Push Result (5) 5

9 Push 5 9

- Pop Two Elements &
Evaluate

5-9=-4

Push -4

2 3 1 * + 9 -

Evaluate Postfix Expression Using Stack

88

Stack Application

Examples

A summary of the rules follows:

Print operands as they arrive.1

If the stack is empty or contains a left parenthesis on
top, push the incoming operator onto the stack.

2

If the incoming symbol is a left parenthesis, push it on
the stack.

3

If the incoming symbol is a right parenthesis, pop the
stack and print the operators until you see a left
parenthesis. Discard the pair of parentheses.

4

If the incoming symbol has higher precedence than
the top of the stack, push it on the stack.

5

If the incoming symbol has equal precedence with the
top of the stack, use association. If the association is
left to right, pop and print the top of the stack and
then push the incoming operator. If the association is
right to left, push the incoming operator.

6

If the incoming symbol has lower precedence than the
symbol on the top of the stack, pop the stack and
print the top operator. Then test the incoming
operator against the new top of stack.

7

At the end of the expression, pop and print all
operators on the stack. (No parentheses should
remain.)

8

89

Infix, prefix and

postfix

The advantage of using prefix and postfix is that we
don’t need to use precedence rules, associative rules
and parentheses when evaluating an expression.

90

1. stackArray is an array with size of 5. Draw a
suitable stack diagram for each statement below:

Top = -1

a. createStack;

B
Top = 0

b. push(‘B’);

C

B
Top = 1

c. push(‘C’);

B
Top = 0

d. pop();

Activity

Apply stack implementation using array.

91

Activity

2. “myArray” is an array with a size of 5. Draw a
suitable stack diagram for each statement
below.
CreateStack;
Push (‘B’);
Push (‘F’);
Pop ();
Push (‘J’);
Pop ();
Push (‘M’);

92

3. Converting Infix to Postfix
a. a + b
b. a + b * c
c. a + b * (c – d) / (p – r)

CHAPTER 4

QUEUES

INTRODUCTION TO

QUEUE

▪ New items enter at the back, or
rear, of the queue

▪ Items leave from the front of the
queue

▪ First-in, first-out (FIFO) property
✓ the first item inserted into a

queue is the first item to leave
✓ middle elements are logically

inaccessible

▪ Important in simulation &
analyzing the behavior of
complex systems

93

Enqueue and

Dequeue

▪ A queue has a front and a rear.
▪ Enqueue (Push)

✓ Insert an element at the rear of the queue
▪ Dequeue (Pop)

✓ Remove an element from the front of the queue

Insert

(Enqueue)

Remove

(Dequeue)
rearfront

Basic Structure of a Queue:

data structure that hold the queue

front

rear

94

Enqueue and

Dequeue

Queue implementation:

Add/

Enqueue
Remove/
Dequeue

RearFront

A B C

Add/

Enqueue

RearFront

A B C D

Insert D into Queue (enQueue) : D is inserted at rear

RearFront

B C D

Remove/

Dequeue
A

Delete from Queue (deQueue) : A is removed

95

Queue

Implementation

Two Types of Queue Implementation:

Linear implementation (Using Array)

Circular Array

Queue: Linear Implementation (Using Array)

▪ Number of elements in Queue are fixed during
declaration.

▪ Need isFull() operation to determine whether a

queue is full or not.

Element to store items in Queue 1

Element to store index at rear 3

2 Element to store index at front

Queue structure need 3 elements:

96

Queue Implementation

Using Array

Create New Queue Operation

▪ Declare
✓ front & rear are indexes in the array
✓ Initial condition: front =0 & rear = -1
✓ Size of an array in queue

0 1 2 3 Max size

Queue

0

front

-1

rear

0 1 2 3 Max size0

front

-1

rear

Create Queue

item

Front refer to index 0

97

enQueue Operation

0 1 2 3 4

A

0

front

-1

rear

Create Queue

item

Front refer to index 0

void enQueue(){

cout<<"\n\t#################\n";

cout<<"\n\t1. enQueue\n";

//check queue is full

if(rear == max - 1){

cout<<"\n\tQueue Is Full, Cannot Add Item In Queue\n";

}else{

cout<<"\n\t\tEnter Item:";

cin>>newitem;

rear++;

item[rear]=newitem;

cout<<endl;

}

}

rear = -1+1
rear = 0

rear ++

From rear
item[rear] =newitem

98

Queue Implementation

Using Array

0 1 2 3 4

A B

0

front

-1

rear

item

Front refer to index 0

enQueue Operation

rear = 0 + 1
rear = 0

From rear
item[rear] =newitem

0 1 2 3 4

A B C

0

front

-1

rear

item

Front refer to index 0

rear = 1 + 1
rear = 2

From rear
item[rear] =newitem

0 1 2 3 4

A B C D

0

front

-1

rear

item

Front refer to index 0

rear = 2 + 1
rear = 3

From rear
item[rear] =newitem

rear ++

rear ++

rear ++

99

Queue Implementation

Using Array

0 1 2 3 4

A B C D E

0

front

-1

rear

item

Front refer to index 0

enQueue Operation

rear = 3 + 1
rear = 4

From rear
item[rear] =newitem

rear ++

100

Queue Implementation

Using Array

0 1 2 3 4

A B C D E

0

front

-1

rear

item

Front refer to index 0

deQueue Operation

rear = 3 + 1
rear = 4

From rear
item[rear] =newitem

void deQueue(){

cout<<"\n\t#################\n";

cout<<"\n\t2.deQueue\n";

if(rear < front){

cout<<"\n\tThere is no data to remove from queue\n";

}else{

char itemdeleted;

itemdeleted=item[front];

item[front] = NULL;

cout<<"\n\tItem Remove From Queue:"<<itemdeleted<<endl;

front++;

}

cout<<endl;

}

deQueue

From front
item[front] = NULL

itemdeleted = item[front]
front = 0

101

Queue Implementation

Using Array

0 1 2 3 4

NULL B C D E

1

front

-1

rear

item

Front refer to index 1

deQueue Operation

rear = 3 + 1
rear = 4

front = 0 + 1
front = 1

front++

0 1 2 3 4

NULL B C D E

1

front

-1

rear

item

Front refer to index 1

rear = 3 + 1
rear = 4

front++

itemdeleted = item[front]
front = 1

From front
item[front] = NULL

102

Queue Implementation

Using Array

0 1 2 3 4

NULL NULL C D E

2

front

-1

rear

item

Front refer to index 2

deQueue Operation

rear = 3 + 1
rear = 4

front = 1 + 1
front = 2

front++

0 1 2 3 4

NULL NULL C D E

2

front

-1

rear

item

Front refer to index 2

rear = 3 + 1
rear = 4

front++

itemdeleted = item[front]
front = 2

From front
item[front] = NULL

103

Queue Implementation

Using Array

0 1 2 3 4

NULL NULL NULL D E

3

front

-1

rear

item

Front refer to index 3

deQueue Operation

rear = 3 + 1
rear = 4

front = 2 + 1
front = 3

front++

0 1 2 3 4

NULL NULL NULL D E

3

front

-1

rear

item

Front refer to index 3

rear = 3 + 1
rear = 4

front++

itemdeleted = item[front]
front = 3

From front
item[front] = NULL

104

Queue Implementation

Using Array

0 1 2 3 4

NULL NULL NULL NULL E

4

front

-1

rear

item

Front refer to index 4

deQueue Operation

rear = 3 + 1
rear = 4

front = 3 + 1
front = 4

front++

0 1 2 3 4

NULL NULL NULL NULL E

4

front

-1

rear

item

Front refer to index 4

rear = 3 + 1
rear = 4

front++

itemdeleted = item[front]
front = 4 From front

item[front] = NULL

105

Queue Implementation

Using Array

Queue: Linear Implementation (Using Array)

▪ Problem: Rightward-Drifting:
✓ After a sequence of additions & removals, items

will drift towards the end of the array
✓ enQueue operation cannot be performed on

the queue below, since rear = max – 1

0 1 2 3 4

NULL NULL NULL NULL NULL

5

front

4

rear

item

rear = 3 + 1
rear = 4

front++

front = 4 + 1
front = 5

▪ Rightward drifting solutions
✓ Shift array elements after each deletion
✓ Shifting dominates the cost of the implementation

106

Queue Implementation

Using Array

Queue : Circular Array

▪ Use a circular array: When Front or
rear reach the end of the array,
wrap them around to the beginning
of the array

▪ Problem:
✓ Front & rear can't be used to

distinguish between queue-full &
queue-empty conditions

Solution

Count == MAX_QUEUE
means full queue

Use a counter

Count == 0 means empty
queue

107

Queue : Circular Array

▪ Number of elements in Queue are
fixed during declaration.

▪ Need isFull() operation to

determine whether a queue is full or
not.

Queue structure need 4 elements

Element to store items in Queue 1

Element to store index at rear 3

2 Element to store in Queue

4 Element to store index in counter

108

Create Queue Operation

▪ Declare
✓ front & rear are indexes in the

array
✓ count to store index
✓ Initial condition: front =0 , rear =

-1, count = 0
✓ Size of an array in queue

Queue: Circular Array

▪ The Wrap-around effect is obtained
by using modulo arithmetic (%-
operator)

front = 0

rear = -1

0

1

2

34

5

6

7

count = 0

109

Queue: Circular Array

▪ enQueue
✓ Increment rear, using modulo

arithmetic
✓ Insert item
✓ Increment count

▪ deQueue
✓ Increment front using modulo

arithmetic
✓ Decrement count

▪ Disadvantage
✓ Overhead of maintaining a counter

Example Code 2:

#include <iostream>

using namespace std;

#define max 8

char queue[max], newitem;

int front = 0, rear = -1, count = 0; front = 0

rear = -1

0

1

2

34

5

6

7

count = 0

110

Queue: Circular Array

front = 0

rear = 00

1

2

34

5

6

7

count = 1

A

rear = (-1 + 1) % 8
rear = 0 % 8
rear = 0
queue[0] = A

count = 0 + 1
count = 1

0

0

0

8√ 0

front = 0

rear = 1

0

1

2

34

5

6

7

count = 2

A

rear = (0 + 1) % 8
rear = 1 % 8
rear = 1
queue[1] = B

count = 1 + 1
count = 2

0

0

1

8√ 1

From previous slide: front = 0, rear = 0, count = 1

111

Queue: Circular Array

From previous slide: front = 0, rear = 1, count = 2

front = 0

rear = 2

0

1

2

34

5

6

7

count = 3

A

rear = (1 + 1) % 8
rear = 2 % 8
rear = 2
queue[2] = C

count = 2 + 1
count = 3

0

0

2

8√ 2

From previous slide: front = 0, rear = 2, count = 3

front = 0

rear = 3

0

1

2

34

5

6

7

count = 4

A

rear = (2 + 1) % 8
rear = 3 % 8
rear = 3
queue[3] = D

count = 3 + 1
count = 4

0

0

3

8√ 3

112

Queue: Circular Array

From previous slide: front = 0, rear = 2, count = 3

From previous slide: front = 0, rear = 3, count = 4

front = 0

rear = 3

0

1

2

34

5

6

7

count = 4

A

rear = (2 + 1) % 8
rear = 3 % 8
rear = 3
queue[3] = D

count = 3 + 1
count = 4

0

0

3

8√ 3

front = 0

rear = 4

0

1

2

34

5

6

7

count = 5

A

rear = (3 + 1) % 8
rear = 4 % 8
rear = 4
queue[4] = E

count = 4 + 1
count = 5

0

0

4

8√ 4

113

Queue: Circular Array

From previous slide: front = 0, rear = 4, count = 5

From previous slide: front = 0, rear = 5, count = 6

front = 0

rear = 5

0

1

2

34

5

6

7

count = 6

A

rear = (4 + 1) % 8
rear = 5 % 8
rear = 5
queue[5] = F

count = 5 + 1
count = 6

0

0

5

8√ 5

front = 0

rear = 6 0

1

2

34

5

6

7

count = 7

A

rear = (5 + 1) % 8
rear = 6 % 8
rear = 6
queue[6] = G

count = 6 + 1
count = 7

0

0

6

8√ 6

114

Queue: Circular Array

From previous slide: front = 0, rear = 6, count = 7

front = 0rear = 7

0

1

2

34

5

6

7

count = 8

A

rear = (6 + 1) % 8
rear = 7 % 8
rear = 7
queue[7] = H

count = 7 + 1
count = 8

0

0

7

8√ 7

115

Queue: Circular Array

void deQueue(){

cout<<"\n\t#### deQueue Circular

####\n";

if(count == 0){

cout<<"\n\tQueue Circular Is

Empty, No Data To Be Deleted!!!\n";

}else{

queue[front] = NULL;

front=(front + 1) % max;

count--;

}

}

front = 1

rear = 7

0

1

2

34

5

6

7

count = 7

queue[0] = NULL
front = (0 + 1) % 8
front = 1 % 8
front = 1

count = 8 - 1
count = 7

0

0

1

8√ 1

116

Queue: Circular Array

front = 2

rear = 7

0

1

2

34

5

6

7

count = 6

queue[1] = NULL
front = (1 + 1) % 8
front = 2% 8
front = 2

count = 7 - 1
count = 6

0

0

2

8√ 2

From previous slide: front = 1, rear = 7 , count = 7

117

Queue: Circular Array

Queue Implementation

Using Linked List

▪ Pointer-Based Implementation
✓ More straightforward than array-

based
✓ Need Two external pointer (Front &

rear) which front to trace deQueue
operation and rear to trace enQueue
operation.

118

Queue: Circular Array

Create Queue

Implementation Using

Linked List

Example Code 1:

#include <iostream>

using namespace std;

struct nodeQueue{

char name;

int age;

nodeQueue *next;

};

name age next

Compiler get the initial illustrated

structure of node

nodeQueue *rear = NULL;

nodeQueue *front=NULL;

NULL

NULL

rear

front

119

Queue: Circular Array

enQueue Implementation

Using Linked List

void enQueue(){

//create new node

nodeQueue *newnode;

newnode = new nodeQueue;

cout<<"\n\t####enQueue####\n";

//assign data field for name and age

cout<<"Enter Name:";

cin>>newnode->name;

cout<<"Enter Age:";

cin>>newnode->age;

newnode->next = NULL;

Ali 29 NULL

newnode

0110

0110

120

Queue: Circular Array

enQueue Implementation

Using Linked List

//insert newnode into queue

//check whether queue is empty

if((front == NULL) && (rear ==

NULL)){

front = newnode;

rear = newnode;

}else{

rear->next = newnode;

rear = newnode;

}

0110

front

0110

newnode

Ali 29 NULL

age

0110

name next

Insertion to an empty queue

0110

rear

121

Queue: Circular Array

enQueue Implementation

Using Linked List

Insertion to a non empty queue

rear->next = newnode;

rear=newnode;

Tina 30 NULL

0111

name age nextnewnode

0111

0110

rear

0110

front

Ali 29 NULL

age

0110

name next

122

Queue: Circular Array

enQueue Implementation

Using Linked List

Insertion to a non empty queue

Tina 30 NULL

0111

name age next

0111

rear

0110

front

Ali 29 0111

age

0110

name next

123

Queue: Circular Array

enQueue Implementation

Using Linked List

void deQueue(){

cout<<"\n\t####deQueue####\n";

//check whether queue is empty

if((front == NULL) && (rear == NULL)){

cout<<"\n\tQueue Is Empty!!!\n";

}else{

nodeQueue *temp;

temp = front;

if(front->next == NULL){

front = NULL;

rear = NULL;

delete temp;

}else{

front = front->next;

delete temp; } } }

If the queue

contains one item

only

124

Queue: Circular Array

enQueue Implementation

Using Linked List

If the queue contains one item only to be deleted

nodeQueue *temp;

temp = front;

0110

front

Ali 29 NULL

age

0110

name next

0110

rear

0110

temp
if(front->next == NULL){

front = NULL;

rear = NULL;

delete temp;

}else{

…}

NULL

front

NULL

rear

125

Queue: Circular Array

enQueue Implementation

Using Linked List

If the queue contains more than one item

nodeQueue *temp;

temp = front;

Tina 30 NULL

0111

name age next

0111

rear
0110

front

Ali 29 0111

age

0110

name next

0110

temp

…}else{

front = front->next;

delete temp; }

Tina 30 NULL
0111

name age next
0111

rear
0111

front

Ali 29 0111
age

0110

name next

0110

temp

Tina 30 NULL

0111

name age next

0111

rear
0111

front

126

Queue: Circular Array

Display Queue

Implementation Using

Linked List

void displayQueue(){

cout<<"\n\t####Display Queue####\n";

if((front == NULL) && (rear == NULL)){

cout<<"\n\tQueue Is Empty!!!\n";

cout<<"\n\tfront :"<<front<<"\trear :"<<rear<<endl;

}else{

nodeQueue *cursor;

cursor=front;

cout<<"\n\tThe Elements In Queue Are\n";

cout<<"\n\tfront :"<<front<<"\trear :"<<rear<<endl;

int node=1;

while(cursor){

cout<<"\n\tNode :"<<node++<<"\tName :"<<cursor->name<<"\tAge

:"<<cursor- >age<<"\tcursor-next:"<<cursor->next<<endl;

cursor=cursor->next; } }

127

Queue: Circular Array

Queue Implementation

Using Linked List

int main()

{

int selection;

menu:

cout<<"\n\nMenu Selection\n";

cout<<"\n1\tenQueue\n";

cout<<"\n2\tdeQueue\n";

cout<<"\n3\tDisplay Queue\n";

cout<<"\n\tSelection is:";

cin>>selection;

switch(selection){

case 1: enQueue();

displayQueue();

goto menu;

break;

case 2: deQueue();

displayQueue();

goto menu;

break;

case 3: displayQueue();

goto menu;

break;

default:cout<<"\n\tWrong Selection\n"; }

return 0;

}

128

Activity

129

1. A Queue Linear Array name as Q stores int values. Draw

a Queue Linear Array to show what Q will look like after

each of the following operations is executed. Set the

size of an array is 7, a rear=-1 and front=0 before the

following operations start. State the changes of rear

and front after each of the operation is executed.

i. enqueue(Q, 6);

ii. enqueue(Q, 12);

iii. enqueue(Q, 13);

iv. dequeue();

v. dequeue();

vi. enqueue(Q, 19);

vii. enqueue(Q, 21);

viii. enqueue(Q, 22);

ix. dequeue();

x. enqueue(Q, 20);

0 1 2 3 4 5 6

front

rear=-1

Q

Activity

2. Draw the Circular Queue according to the
segment code below:

struct cQueue
{
int front,rear,count;
int cQueue[3];

} cQueue;

void create(cQueue *cq)
{
cq->front = 0;
cq->rear = 0;
cq->count = 0;

}

130

Activity

3. Draw the Circular Queue according to the
segment code below:

enQueue(Q,A)
enQueue(Q,B)
enQueue(Q,C)
deQueue()
deQueue()
deQueue()
enQueue(Q,D)
enQueue(Q,E)

1

2

Count=0

rear
front

0

Q

131

CHAPTER 5

TREES

DEFINITION OF TREE

Trees represent one of the most

important types of data structures in
computing. They can be implemented
in virtually any programming language.

The tree is a nonlinear hierarchical
data structure and comprises a
collection of entities known as nodes. It
connects each node in the tree data
structure using "edges”, both directed
and undirected.

132

An organization’s structure

The information that we store in our computers is in
the form of a hierarchy where every folder has some
files stored in it.

Other

Application 1Store hierarchical data

Decision trees2

3

4

In Computer graphics

In java virtual machine

Application Of Tree

133

Tree is a hierarchical data structure defined as a collection
of nodes. Nodes represent value and nodes are connected
by edges. A tree has the following properties:

Terminology Description Example

Root Root is a special node in a tree. The entire
tree originates from it. It does not have a
parent.

1

Parent Node Parent node is an immediate predecessor
of a node

2 is parent
of 3 & 4

Child Node All immediate successors of a node are its
children.

3 & 4 are
children of

2

Leaf Node which does not have any child is
called as leaf

3,8,9 and 7

Edge Edge is a connection between one node
to another. It is a line between two nodes
or a node and a leaf.

Line
between 2
& 3 is edge

Siblings Nodes with the same parent are called
Siblings.

3 & 4 are
siblings

Path /
Traversing

Path is a number of successive edges from
source node to destination node.

1-2-3

Degree of
Node

Degree of a node represents the number of
children of a node

Degree of 2
is 2 and of

6 is 1

1

52

3 4 6 7

8 9

Level 0

Level 1

Level 2

Level 3

Tree Terminology

134

A binary tree is a more focused version of a tree data

structure. Each node is only allowed to have a maximum of
2 children, a left hand node and a right hand node. The
left hand node will generally have a value less than its
parent, and the right hand node will have a value greater
than its parent.

Example

15 10 20 8 12 17 25

15

8

10 20

12 17 25

root

Binary Tree

135

General Tree Binary Tree

Tree can’t be empty Tree can be empty

There is no limit on
the degree of node

Nodes in a binary tree
cannot have more

than degree 2

Subtree of general tree
are not ordered.

Subtree of binary tree
are ordered

Each node have in-
degree one and maximum

out-degree n

Each node have in-
degree one and maximum

out-degree 2.

Tree Vs Binary Tree

136

Example

Binary Tree

137

Construct Binary Tree from Arithmetic Expression and vice versa

To construct Binary Tree :

▪ Each leaf node represents an operand
▪ Each non-leaf node or internal node represents a single

binary operator

Binary Tree

138

To construct Binary Search Tree :

Definition

A binary search tree (BST) is a binary tree where every node

in the left subtree is less than the root, and every node in t
he right subtree is of a value greater than the root.

Searching

Binary search trees are called “search trees” because they make
searching for a certain value more efficient than in an unordered
tree. In an ideal binary search tree, we do not have to visit every
node when searching for a particular value.

Here is how we search in a binary search tree:

▪ Begin at the tree’s root node

▪ If the value is smaller than the current node, move left
▪ If the value is larger than the current node, move right

Binary Search Trees

139

To construct Binary Search Tree :

Inserting

New nodes in a binary search tree are always added at
a leaf position. Performing a search can easily find the

position for a new node.

Removing

When removing from a binary search tree, we are concerned
with keeping the rest of the tree in the correct order. This
means removing is different depending on whether the node
we are removing has children.

There are three cases:
▪ If the node being removed is a leaf, it can simply be

deleted.

Binary Search Trees

140

Removing..

▪ If the node has a single child, (left or right) we must move
the child into the position of the node when deleting it..

▪ If the node has two children, we must first find the In-Order
Predecessor (IOP): the largest node in our node’s left

subtree. The IOP is always a leaf node, and can be found
by starting at the left subtree’s root and moving right. We
can then swap the node being removed with its IOP and
delete it, as it is now a leaf.

Binary Search Trees

141

There are three ways which we use to traverse a tree

▪ In-order Traversal
▪ Pre-order Traversal
▪ Post-order Traversal

In-order Traversal

▪ Visit the left sub tree if exist
▪ Visit Root
▪ Visit the right sub tree if exist

Inorder :

C, B, D, E, A, F, I, H, J, G

Trees Traversal

142

Pre-order Traversal

▪ Visit Root
▪ Visit Subtrees left to right

Preorder :
A , B, C, D, E, F, G, H, I, J

Trees Traversal

143

Post-order Traversal

▪ Visit the left sub tree if exists.
▪ the right sub tree if exists
▪ Visit root

Postorder :
C, E, D, B, I, J, H, G, F, A

Trees Traversal

144

Postfix Prefix

Infix

Operation : Any Expression of algebraic format

(Example : A + B)
Operands : A and B or 5 & 6 are operands
Operators : +. -, %,*,/ etc are operators

Conversion

145

Activity

146

Draw a Binary Tree from the Arithmetic Expressions below:

i. A + B * C / (D – E)

ii. A * B + (C – D / E)

iii. A * B / (5 * C) + 10

Prefix

Infix

1.

2.

Activity

147

Prefix

Infix

Find PreOrder Traversal

Find InOrder Traversal

3.

4.

Activity

148

Prefix

Infix

Find PostOrder Traversal5.

Activity

149

CHAPTER 6

SORTING
&

SEARCHING

DEFINITION

▪ Sorting refers to arranging data in a

particular format.
▪ Particular format

✓ increasing order
✓ decreasing order

▪ It arranges the data in a sequence which
makes searching easier.

The importance of Sorting

To represent data in more
readable formats

Speed up the search process to
the data

Simplify the process of
understanding and analysis of data
collection

150

Calendar

Phone
books

Dictionary

Example Of Sorting In

Real-life Scenarios

Sorting
material

Application

151

Sorting technique that is used to sort the data in a
sequence order in ascending order or in descending

order.

Insertion
Sort

Methods of
Sorting

AlgorithmBubble
Sort

Selection
Sort

Merge
Sort

Quick
Sort

Heap
Sort

B
D

A
C

A B C D

Sorting Algorithm

152

Insertion sort iterates, consuming one input element
each repetition, and growing a sorted output list. At
each iteration, insertion sort removes one element from
the input data, finds the location it belongs within the
sorted list, and inserts it there. It repeats until no input
elements remain.

Insertion Sort (in ascending order)

Insertion Sort

153

Bubble sort, sometimes referred to as sinking sort, is a

simple sorting algorithm that repeatedly steps through
the list, compares adjacent pairs and swaps them if
they are in the wrong order. The pass through the list is
repeated until the list is sorted. This algorithm starts at
the beginning of the array, compares each element
with the element immediately to the right of it, and
makes a swap if the elements are out of order with
each other.

Process Bubble Sort (in descending order)

Bubble Sort

154

▪ Finds the smallest element in the array and
exchanges it with the element in the first position.

▪ Then finds the second smallest element and
exchanges it with the element in the second
position

▪ Continues until the entire array is sorted in
ascending order

Sort the following numbers in ascending order

Selection Sort

155

▪ Dividing the data elements in the array to smaller

groups
▪ Carry out the sorting in the smaller group
▪ Use divide and conquer approach

Three Steps in merge sort

1. Divide – break the problem into sub problems

2. Conquer – sub problems will be solved
3. Merge – combine the solutions for each sub problems

to solve the original problem

Example merge sort 1

Merge Sort

156

Example merge sort 2

Merge Sort

157

1. Uses the idea of divide an conquer.
2. It finds the element called pivot which is divides

the array into two halves in such a way that the
elements in the left half are smaller than pivot and
elements in the right are greater than pivot.

3. Three steps in quick sort

3

2

Quick Sort

quick sort the
right half

quick sort the
left half

1 Find pivot that
divides the array

3 step quick
sort

158

Quick Sort

159

Quick Sort

160

In computer science, a search algorithm, is an
algorithm for finding an item with specified

properties among a collection of items.

Types of Searching

▪ In computer science, linear search or sequential
search is a method for finding a particular value
in a list, that consists of checking every one of its
elements, one at a time and in sequence, until the
desired one is found

▪ Linear search is the simplest search algorithm
▪ Is use to search data when the list is unsorted
▪ Searching for the key is done one by one from the

first element on the list until the key is found or until
the last element

1

2Linear

Search
Binary

Search

Linear Search

Searching

161

Linear Search

Searching

162

▪ At each stage, the algorithm compares the input key
value with the key value of the middle element of the
array. If the keys match, then a matching element has
been found so its index, or position, is returned.

▪ Otherwise, if the sought key is less than the middle
element's key, then the algorithm repeats its action on
the sub-array to the left of the middle element or, if the
input key is greater, on the sub-array to the right.

▪ Algorithm is quite simple. It can be done either recursively
or iteratively:

✓Sort the list first

✓get the middle element;

✓ if the middle element equals to the searched value,
the algorithm stops;

▪ Otherwise, two cases are possible:

✓searched value is less, than the middle element. In this
case, search the part of the array, before middle
element.

✓searched value is greater, than the middle element. In
this case, search the part of the array, after middle

element.

Binary Search

Binary Search Implementation

Searching

163

Search value 5 in list below

Binary Search

Searching

164

1. Show the procedure to sort the items below using

selection sort

2. Show the procedure to sort the items below using

selection sort.

a) show selection sort process in ascending order

b) show selection sort process in descending order

7 4 5 9 8 2 1

40 30 9 20 10 50

Activity

165

3. Show the procedure to sort items below using bubble
sort.

4. Show the procedure to sort the items below
using quick sort.

REFERENCES

Abstract data type in data structure - javatpoint. www.javatpoint.com. (n.d.). Retrieved

August 10, 2022, from https://www.javatpoint.com/abstract-data-type-in-data-

structure.

Data Structures. GeeksforGeeks. (2022). Retrieved August 10, 2022, from

https://www.geeksforgeeks.org/data-structures/

Data Structure and algorithms tutorial. Tutorials Point. (n.d.). Retrieved August 10,

2022, from https://www.tutorialspoint.com/data_structures_algorithms/index.htm

Eljinini. M. A. (2019). Practical Data Structures with C++, C#, and Java: in English and

Arabic. Jordan. (ISBN: 9957674005)

Roughgarden. T. (2020). Algorithms Illuminated (Part 4): Algorithms for NP-Hard

Problems. Soundlikeyourself Publishing, LLC. New York. (ISBN: 0999282964)

Subero. A. (2020). Codeless Data Structures and Algorithms: Learn DSA Without

Writing a Single Line of Code 1st ed. Edition. Apress. New York. (ASIN: B084V17V3B)

T.Sheela. (2007). Data Structures. Chennai. (ISBN: 81-87721-88-X)

Wengrow. J. (2020). A Common-Sense Guide to Data Structures and Algorithms,

Second Edition: Level Up Your Core Programming Skills 2nd Edition. Pragmatic

Bookshelf.United State. (ISBN: 1680507222)

https://www.tutorialspoint.com/data_structures_algorithms/index.htm

